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The one-dimensional motion of a chain of N beads is studied to determine its diffusion coefficient. We found
an exact analytical expression for all N through two methods by resorting to the Einstein relation. Results are
tested with the help of Monte Carlo simulations.
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A chain in one dimension can move by contracting and
stretching in a wormlike fashion. This mechanism, named
reptation in polymer physics, plays a key role in the dynam-
ics of entangled polymer melts and, in a similar manner, in
the electrophoresis of DNA molecules �1,2�. In the dynamics
of entangled polymers, neighboring chains constrain a given
chain to diffuse only along a confining tube and then the
chain executes a one-dimensional random walk �3–7�. Thus,
a chain can progress by leaving part of the initial tube and
creating a new part as it reptates.

The model, as originally introduced, predicts that diffusiv-
ity scales with the molecular weight as M−�, where �=2 in
three dimensions. While a reptating chain moves along its
tube in space this motion corresponds to a much smaller
displacement because the tube is contorned; it can be shown
that for the one-dimensional diffusivity along the tube �=1.

In this paper we discuss a model we introduced recently
that describes a chain diffusing in one dimension �8�. The
dynamics is similar to that described in the original work of
de Gennes �3�. However, in our model particles do not have
all the same mobility. To determine diffusivity and mobility
of such a chain is the main goal of the present paper.

We consider a chain in a one-dimensional lattice consist-
ing of N particles that can hop to the nearest site only if this
site is empty. Particles can hop to the right or left but no
more than a site can be empty between two particles, a rule
that maintains the integrity of the chain. Particles located at
the end of the chain have different behavior than the rest.
Indeed, if allowed by the above rules, a middle particle
jumps with a probability per unit time pc while end particles
are allowed to jump with probabilities per unit time pa and
pb when jumping stretches or compresses the chain, respec-
tively. Hence, pa, pb, and pc are the free parameters in this
model �9�. In the following we use that the distance a be-
tween adjacent sites of the lattice is equal to 1.

An empty site in the chain is named a hole. A hole is
created or annihilated every time an end particle jumps mov-
ing away from the chain or towards the chain. An end par-
ticle jumping attempt that creates a hole is successful with
probability pa�1− Ph�, where Ph is the hole probability. Simi-
larly, an end particle jumping attempt that annihilates a hole
succeeds with probability pbPh. In equilibrium we expect the
same probability for creation and annihilation. Then, Ph can
be expressed as

Ph =
pa

pa + pb
. �1�

Rubinstein introduced a model in which the chain also
consists of N connected elements, the reptons �10�. The in-
tegrity of the chain is maintained by not allowing moves that
vacate a site. Also, the original order of the reptons is pre-
served and thus a repton can move only if it is an end mem-
ber of the reptons that occupy the same cell. The model has
a parameter z that reflects the dimension of the problem. z is
the number of possible gates for an end repton to move.
Then, there are z−1 possible gates to enter into an empty cell
and only one gate to move into an already occupied one. For
one dimension z=2 and for three dimensions z=6, which can
be understood to correspond to a three-dimensional cubic
lattice. Hence, at the end of the chain the probability of a
move that lengthens the configuration must be �z−1� times
the probability that shortens it. Thus, the probability of all
moves are 1/z, except those of the end reptons that lengthen
the chain that are �z−1� /z.

The rules of our model are different from those of the
repton model of Rubinstein, but there is a direct correspon-
dence between both models regarding diffusion. The main
difference between both models is the flexibility we adopted
regarding the possible different jump probabilities for par-
ticles at the end of chains. Indeed, it is readily seen that the
Rubinstein model corresponds to our model by making
pb= pc=1/z and pa= �z−1� /z.

We recently attempted to derive exact analytical expres-
sions for the diffusivity in our model and were only success-
ful for a chain with two and three beads �9�. We used an
approach not regularly applied in the literature that simplifies
the calculations and the problem could be solved using only
algebra �11,12�. The method consists in applying Ficks’s first
law for a large number of noninteracting chains diffusing in
steady state. The method requires the analysis of all possible
chain configurations and then it becomes intractable for
N�3. In what follows, after a general discussion, we will
introduce two approaches that, resorting to the Einstein rela-
tion, lead to the exact analytical form for the chain diffusiv-
ity for all N.

First we will discuss some basic ideas in the simple case
of a single diffusing particle. The diffusion coefficient D is
given by
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D = ka2, �2�

where k is the jumping frequency, to the right or to the left,
between nearest neighbor lattice sites separated by a distance
a. Let us consider next the asymmetric case in which the
jumping frequencies to the right and to the left are �1+��k
and k, respectively ���0�. If so, the particle moves to the
right with drift velocity v given by

v = a�k . �3�

To derive the Einstein relation we consider a small potential
gradient and then a small force F acting on the particle to the
right. With ��1 we can write

1 + � = exp��V/kBT� � 1 + �V/kBT = 1 + Fa/kBT . �4�

The mobility � is defined as the ratio between drift velocity
and force. Thus

v = �F . �5�

With Eqs. �2�–�4� the Einstein relation is obtained:

� =
D

kBT
. �6�

For the sake of simplicity, we can define a mobility ��
through the equation

v = ��� . �7�

Accordingly, the Einstein relation adopts the form

�� = D/a . �8�

For ��1, � is proportional to the force F and the validity of
Eq. �6� implies the validity of Eq. �8� �i.e., both relations are
equivalent�. Note that the standard Einstein relation is only
valid for small values of F �strictly speaking in the limit
F→0�. Conversely, in the present simple case, Eq. �8� holds
for any value of �. In the following we will refer to Eqs. �6�
and �8� as the Einstein relation and � as the “force” acting on
a bead.

In Fig. 1 we show a chain of three beads in which a force
is applied to all beads. P and Q are the probabilities of find-
ing a hole between particles 1 and 2 and between particles 2
and 3, respectively. With no force applied, P and Q adopt the
value given by Eq. �1�. We will see that, in general, this is
not the case. When a force to the right is applied as shown in
Fig. 1, the average velocity of the beads to the right can be
expressed, within a mean field approach, as

v1 = �1 + ��pa�1 − P� − pbP , �9�

v2 = �1 + ��pc�1 − Q�P − pc�1 − P�Q , �10�

v3 = �1 + ��pbQ − pa�1 − Q� , �11�

where v1, v2, and v3 are the velocities for particles 1, 2, and
3 of the chain. Since all particles must have the same drift
velocity, v1=v2=v3=v. From Eqs. �9� and �11�, P and Q can
be expressed as follows:

P =
�1 + ��pa − v
�1 + ��pa + pb

, �12�

Q =
pa + v

pa + �1 + ��pb
. �13�

For small forces, ��1 and then v=O���, Eqs. �12� and �13�
can be written at order � as

P =
pa

pa + pb
�1 + �� , �14�

Q =
pa

pa + pb
�1 − �� , �15�

where

� =
pb

pa + pb
� −

v
pa

. �16�

With Eq. �10� and the help of Eqs. �14�–�16�, the velocity
can be derived to be

v =
3�papbpc

�pa + pb��pa + pb + 2pc�
. �17�

It can be shown that correlations between holes are present in
a field but they are null at order � and then the mean field
assumption is valid. Finally, since the total force applied to
the chain is 3�, using the Einstein relation, the diffusivity
adopts the form

D =
papbpc

�pa + pb��pa + pb + 2pc�
, �18�

which is the same result obtained in Eq. �20� of Ref. �9�.
It is straightforward to extend this method to longer

chains. From a quick inspection of the expressions resulting
for chains of different length, the general expression for the
diffusivity can be inferred to be

D =
papbpc

�pa + pb���N − 2��pa + pb� + 2pc�
, �19�

which is valid for N�2. In Fig. 2, numerically calculated
diffusion coefficients and theoretical results using Eq. �19�
are shown. The agreement is remarkable. Note that for
pa+ pb= pc the diffusivity adopts the value papb / pcN.

For the special case that corresponds to the Rubinstein
model, pa= �z−1� /z, and pb= pc=1/z. The diffusivity in this
model, DR, adopts the form

FIG. 1. Chain of three beads and jumping probabilities when the
same force is applied to every bead. P is the probability of finding
a hole between particles 1 and 2 and Q is the probability of finding
a hole between particles 2 and 3.
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DR =
z − 1

�N − 2�z3 + 2z2 . �20�

This result is in agreement with the numerically calculated
diffusivities and the asymptotic result reported in Ref. �10�.

We found a much simpler method to figure out the coef-
ficient of diffusivity for our model. In the reptation theory, as
originally presented by de Gennes, all beads have the same
behavior �1,3�. Then, the frictional force is proportional to
the number of beads in the chain. Hence, the mobility � must
be equal to �1 /N, where �1, independent of N, is the mobil-
ity of a single bead. If the Einstein relation is valid, then the
one-dimensional diffusion coefficient or tube diffusion must
scale as 1 /N.

Interestingly, the above arguments can be extended to
chains with beads of different mobility. An external force,
Fext, on a chain is directly related to the drift velocity through
the mobility � as v=�Fext. The external force is the sum of
the forces applied to every bead, Fi. We propose that forces
on a particular bead can have an external origin, Fiext �for
example, due to an external electric field if beads are
charged� or an internal origin from its neighbors’ beads.
Thus, for any bead the following equation is valid,

vi = �iFitot, �21�

where Fitot is the sum of the external plus internal forces
acting on the bead. Thus, we can write

1

�
= �

i

Fiext

v
= �

i

Fitot

v
= �

i

1

�i
, �22�

since the sum of all internal forces must vanish and the drift
velocity of the chain and of any bead must be the same.

Equation �22� constitutes the key to solve this type of
problem. Next, the values of �i are needed to be found. To
do it, we can resort to the Einstein relation. Instead of the
mobility, we can determine the diffusivity of the beads
within the chain that can be figured out through the mean
jumping frequency using Eq. �2�.

In our model, the mean jumping frequencies can be
readily calculated. On average, the probability that an end
particle performs a jump, and then the mean jumping fre-
quency, is

ke = �1 − Ph�pa = Phpb, �23�

while for a middle particle, the mean jumping frequency is

km = �1 − Ph�Phpc. �24�

With Eq. �1�, ke and km can be expressed as

ke =
papb

pa + pb
, �25�

km =
papbpc

�pa + pb�2 . �26�

Finally, using Eq. �22� the mobility and then the diffusivity
for the chain can be figured out,

1

D
= �

i

1

Di
=

2

papb

pa + pb

+
N − 2

papbpc

�pa + pb�2

, �27�

an expression that can be readily rearranged to take the form
of Eq. �19�.

It is clarifying to elaborate on the meaning of the pro-
posed internal forces. Let us focus on the simple chain of
three beads of Fig. 1. In the general case in which the mo-
bility of the middle bead is different from that of the end
beads, an external force evenly applied to the three beads
would imply different drift velocities. Obviously, this is not
possible because the chain would lose integrity. Then, how is
it possible that the beads are dragged with the same drift
velocity? The answer to this question is in Eqs. �14� and
�15�. As the chain is dragged it deforms. The chain deforma-
tion is responsible for the drift velocity being the same for
every bead.

If pa+ pb� pc, the mobility of end beads is greater than
that of the middle bead �see Eqs. �25� and �26�� and, from
Eqs. �16� and �17�, ��0. Thus, P becomes larger and Q
smaller related to their values when no force is applied. As a
consequence, the middle particle increases its drift velocity
and end particles reduce theirs �see Eqs. �9�–�11��. If �	0,
the mobility of the middle bead is smaller that that of the end
beads; then P becomes smaller and Q larger so that the drift
velocities of all the particles become the same.

FIG. 2. Diffusion coefficient of the center of mass for chains
consisting of N beads. The parameters of the model �pa
 , pb
 , pc
�
are �1, 1

5 , 1
5 � for case I, � 5

6 , 1
6 , 1� for case II, and � 5

36 , 1
36 , 1� for case

III, where 
 is the unit time. Symbols correspond to Monte Carlo
results and lines to theoretical results according to Eq. �19�. For the
sake of clarity, diffusivity values for case I were multiplied by 10
and those for case III by 0.1.
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When pa+ pb= pc, it can be seen, from Eqs. �25� and �26�,
that the mobilities of all the beads are the same and equal to
papb / pc. In this case, P and Q always adopt the same value,
that corresponding to equilibrium, Eq. �1�. This means that
the chain is dragged without deforming �i.e., without any
internal force�. It can be easily shown that this is valid for a
chain of any length. Indeed, the velocity for a general middle
bead i in a chain of any length is

vi = �1 + ��pc�1 − Q�P − pc�1 − P�Q , �28�

where P and Q correspond to the probability of having a hole
at the right and left of the bead, respectively. If pa+ pb= pc,
then Eq. �28� is satisfied with vi=�papb / pc and
P=Q= pa / �pa+ pb� independently of the value of �. Since
this is a general equation for any middle bead, the probability
of having a hole at any possible site must be the same and
equal to that of equilibrium. Thus, when the same force is
applied to every bead, chains of any length are dragged with-
out deforming and the Einstein relation is always valid. In
other words, the drift velocity is proportional to � for any
value of �.

So far, we considered that the same force was applied to
every bead. However, if this is not the case and ��i��1,
where �i denotes the force applied to bead i, the drift velocity
of the chain is always equal to

v = D�
i

�i. �29�

In summary, using the Einstein relation we could find an
analytical solution for a type of model that simulates the

diffusion of a chain of particles in one dimension. In particu-
lar, the second approach we have introduced is very easy to
apply to a variety of situations. We mean that the mobility of
the beads that form the chain might take any value. We have
checked, for example, that this approach is valid for a case in
which end particles have different mobilities and also for a
chain with middle particles having different jumping prob-
abilities per unit time, pci� . These results were all tested with
the help of Monte Carlo simulations. Thus, the diffusivity, in
the most general manner, can be written as

D =
pa1pbNpc�

�paN + pbN���1 +
pb1

pbN
	pc� + �pa1 + pb1�	 , �30�

where p�c is given by

1

pc�
= �

i=2

N−1
1

pci
, �31�

pa1 and pb1 correspond to one end particle, and paN and pbN
to the other one. Note that pa1 / pb1 must be equal to paN / pbN
if there are no external forces.

Note added in proof. In a recent paper �13�, the author
determines, through a different method than ours, the exact
curvilinear diffusion coefficient in the repton model. His re-
sults are in accordance with the present work.
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